
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41198 446

Recommendation System for Answering Missing

Tuples

Kanchan Pekhale
1
, Dr. K. V. Metre

2

PG Student, Computer Engineering Department, MET BKC Adgaon, Nashik, Maharashtra, India
1

Professor, Department of Computer Engineering, MET BKC Adgaon, Nashik, India
2

Abstract: In the recent years, the quality and the usability of database systems have received more attention. The

performance of database systems has gained more improvement in the past decades so, they are more and more difficult

to use. The why-not questions are needs of user to know why her expected tuples are not shown up in the query results

i.e. the features of explaining missing tuples in database queries. Database system is having the capability that enables

users to seek clarifications on expected query results as well as the absence of expected tuples (i.e. missing tuples). It

would be very helpful to users if they referred why-not questions to seek clarifications on expected tuples in query

results. There are two algorithms to answer why-not questions efficiently. These algorithms are able to return high

quality explanations efficiently. Many users love to pose those kinds of queries when they are making multi-criteria

decisions and user need approximate information from the huge Database.

Keywords: Top-k Question, Dominating Question, Skyline Refined Queries, ConQueR Method.

I. INTRODUCTION

In recent years, there is a growing effort to improve the

usability of database systems. A search engine can help a

user to answer a question by locating information sources

based on keywords. The feature of explaining missing

tuples in database queries is called why-not questions. It

has received growing attentions in recent years. A why-

not question is being posed when a user wants to know

why her expected tuples are not shown up in the query

result. Why-not questions are helpful to users to seek

clarification on missing tuples from the result. Recently, a

certain work is done on answering why- not questions on

traditional relational/SQL queries. However, none of those

can answer why-not questions on preference queries like

top-k queries yet. Answering why-not questions on top-k

queries is useful because users love to pose top-k queries

when making multi-criteria decisions. However, they may

feel lost when their expected answers are missing in the

query result and they may want to know why: Is it because

I have set k too small?, Or I have set my weightings

badly?, Or because of both? For Answering the why-not

questions on top-k queries there are two algorithms.

Namely, a why-not top-k question and a why-not

dominating question. Top-k dominating queries or simply

dominating queries is a variant of top-k query that users

may pose why-not questions on. The top-k dominating

query returns k data objects which dominate the highest

number of objects in a dataset. While a top-k dominating

query frees users from specifying the set of weightings by

ranking the objects based on the number of objects that

they could dominate (e.g., if object x dominates nine

objects while object y dominates four objects, then x ranks

higher than y). For example, the agent of Jeremy Lin, a hot

NBA player this year, may pose a top-100 dominating

query about the best guards in NBA history. When Lin is

not in the result, his agent may want to know the reason: Is

that I have set my k too small? Finding the best

explanations is actually computationally expensive for

both the algorithms. In the why-not top-k question users

can provide W as input, which slightly limits its

practicability and in why-not top-k dominating question

users need not to provide W as input. In the why-not

paradigm, users are quite clear with which are the missing

objects and explained why those objects are missing.

II. LITERATURE SURVEY

SQL Query Recommendation system aims at assisting

non-expert users of scientific databases by tracking their

querying behavior and generating personalized query

recommendations. The system is supported by two

recommendation engines and the underlying

recommendation algorithms. First approach identifies

potentially interesting parts of the database related to the

corresponding data analysis task by locating those

database parts that were accessed by similar users in the

past. The second algorithm identifies structurally similar

queries posted by the current user. Both approaches result

in a recommendation set of SQL queries that is provided

to the user to modify or directly post to the database. The

drawback of this is, it mainly focus on the improving the

Usability and the Quality of the database systems [2].

SnipSuggest aims to help the increasing population of

non-expert database users, who need to perform complex

analysis on their large-scale datasets, but it is difficult to

writing SQL queries. As a user types a query, SnipSuggest

recommends possible additions to various clauses in the

query using relevant snippets collected from a log of past

queries. As a user types a query, she can ask SnipSuggest

for recommendations of what to add to a specific clause of

her query. In response, SnipSuggest recommends small

SQL snippets [3].

Explaining missing answers of queries is useful in various

scenarios, including query understanding and debugging.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41198 447

When queries are used to define multiple views, one may

ask why, employee information is missing from both the

employee register and the payroll views. Artemis

algorithms are able to generate explanations for a set of

missing tuples over a set of queries that include selection,

projection, join, union, and aggregation and grouping

(SPJUA). For explanations, it encodes the problem into a

set of constraints and it combines existing data with new

data [4].

 Database systems are having the capability that

enables users to seek clarifications on unexpected query

results. There are two existing models to explain why-not

questions on query results. The first approach modifying

some tuples in the database so, the result of the query on

the modified database will include both the original result

and the specified missing tuples. The second approach,

explains missing tuples by identifying the manipulation

operations in the query plan that are responsible for

excluding the missing tuples [5].

 The top-k dominating query returns k data objects

which dominate the highest number of objects in a dataset.

Identify the importance and practicability of the query and

define some of its potential extensions. A simple

evaluation method for top-k dominating queries is based

on skyline computation. Advantage of the top-k query is

that the user is able to control the number of results. It

might not always be easy for the user to specify an

appropriate ranking function [6].

 For avoiding the above drawbacks answering the

why-not questions on top-k queries are used, there are two

algorithms to answer such why-not questions efficiently.

First is a why-not top-k question and second is why-not

dominating questions. The why-not questions are the users

need to know why her expected tuples do not shown up in

the query results i.e. the features of explaining missing

tuples in database queries [1].

III. SYSTEM ARCHITECTURE

As shown in Fig. 1, the user can give an input query to the

algorithms. If user can specify the weighting value, the

input query is given to why-not top-k question otherwise

the query is given to why-not top-k dominating question.

In the why-not top-k question users can provide W as

input, which slightly limits its practicability and in why-

not top-k dominating question users need not to provide W

as input. For generation of result a query-refinement

approach is used. That tells the user how to revise her

original queries so that the missing answers can be

returned to the result. This approach defines that a good

refined query should be (a) similar - have few edits

comparing with the original query and (b) precise - have

few extra tuples in the result, except the original result

plus the missing tuples. This helps users to quantify their

preferences as a set of weightings.

A. WHY-NOT TOP-K QUESTION

Suppose there is only one missing object m . First, execute

a progressive top-k query q'0 based on the weighting

vector w 0 in the users original query q0, using any

progressive top-k query evaluation algorithm and stop

when m comes forth to the result set with a ranking r0. If

m does not appear in the query result, report to the user

that m does not exist in the database and the process

terminates.

 If m exists in the database, then randomly sample

a list of weighting vectors S = [w 1,w 2,…,w s] from the

weighting space. For each weighting vector w i ϵ S, then

formulate a progressive top-k query q′
i
 using w i as the

weighting. Each query q′
i
 is executed by a progressive

top-k algorithm, which progressively reports each top

ranking object one-by-one, until the missing object m
comes forth to the result set with a ranking ri. So, after s+1

progressive top-k executions, we have s+1 refined queries

q′
i
(ri , w′

i) where i = 0, 1, 2,...,s, with missing object m

known to be rank ri
th

exactly. Finally, the refined query

q′
i
(ri , w′

i) with the least penalty is returned to the user as

the answer. The least Penalty can be calculated by using

following formula:

Penalty(k',w ') = λk

∆k

(r0−k0) +
∆w

 1+ w0[i]2
 (1)

In the above equation ∆k and ∆w are used to measure the

quality of the refined query. Where ∆k = max 0, k′ −
k0and ∆w=w′−w0. The k′ is a refined query value is

smaller than the original k0 value. r0 is the rank of the

missing object m under the original weighting vector w 0.

To capture a users tolerance to the changes of k and w on

her original query q0 define a basic penalty model that sets

the penalties λk and λw to ∆k and ∆w, respectively, where

λk + λw = 1.

B. WHY-NOT TOP-K DOMINATING QUESTION

Answering why-not top-k dominating questions is similar

to the answering top-k why-not Questions. Assume with

the case where there is only one missing object m . First,

execute a top-k dominating query q0
′ using a progressive

top-k dominating query evaluation algorithm and stop

when m comes forth to the result set with a ranking r0. If

m does not appear in the query result, we report to the user

that m does not exist in the database and the process

terminates. If m exists in the database, then draw a list of

data value samples S = [x 1, x 2, … , x s]. For each data value

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 11, November 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41198 448

sample x i ϵ S, we modify m values to be x i and then

execute a progressive top-k dominating query until m
comes forth to the result set with a ranking ri. So, after s+1

progressive top-k dominating executions, we have s+1

“refined queries and modified values" pairs: q0
′ r0 , m =

m , q1
′ r1 , m = x 1 ,…, qs

′ rs , m = x s . Finally, the

pair with the least penalty is returned to the user as the

answer. A top-k dominating query is composed of a result

set size k and a special score function, which scores an

object p by the number of points that it can dominate. The

query result is then the top-k objects with the highest

scores.

C. SKYLINE REFINED QUERIES

Thus, a refined query is considered to be good if its

dissimilarity and imprecision metrics are low [5]. Among

all the possible refined queries for a why-not question,

interested in the set of skyline refined queries defined as

follows: Given two different refined queries Q1 and Q2,

say that Q1 dominates Q2 if (1) both the metrics of Q1 are

at least as low as those of Q2 and (2) for at least one of the

metrics, Q1’s value is strictly lower than that of Q2’s.

Defined a refined query Q′ to be a skyline refined query

(or skyline query) if Q′ is not dominated by any other

refined query. Thus, goal is to compute skyline refined

queries to explain the question.

D. ConQueR METHOD

ConQueR, is Constraint-based Query Refinement, to

explain why-not questions by automatically generating

one or more refined queries. ConQueR is designed to be a

similarity-driven approach where it tries to generate

refined queries with low dissimilarity values before

considering more precise refined queries that have higher

dissimilarity values. Assume, Given a why-not question

(S,C) for a query Q on database D, ConQueR will first

consider refined queries Q′ that have the same query

schema as Q. That is, ConQueR tries to derive Q′ by

simply modifying selection predicate(s) in Q to explain the

why-not tuples while minimizing the imprecision metric.

If such refined queries exist, ConQueR will only generate

skyline refined queries that all share the same query

schema as Q. However, if no such refined query exists,

ConQueR then looks for refined queries that have a

slightly different query schema, and so on.

Thus, ConQueR effectively iterates over a sequence of

query schemas QS1,…, QSk to search for refined queries:

QS1 is the query schema of the input query Q, and schema

QSi+1 is considered only if there are no refined queries

with schema QS1,…,QSi. The sequence of query schemas

considered is of increasing dissimilarity metric values, and

if QSk is the first query schema in the sequence to contain

refined queries, ConQueR will generate all skyline refined

queries with schema QSk as possible explanations to the

why-not question.

IV. CONCLUSION

User does not understand why her expected answers are

missing in the query result. For this, answering why-not

questions on two types of top-k queries, the basic top-k

query where users need to specify the set of weightings,

and the top-k dominating query where users do not need to

specify the set of weightings because the ranking function

ranks an object higher, if it can dominate more objects. A

refined query with approximately minimal changes to the

k value and their weightings is returned to the user. It can

be used for multi-criteria decision as well as for

approximate information from database. The work will be

performed on numeric data as well as non-numeric data.

Both the algorithms will able to return high quality

explanations efficiently.

REFERENCES

 [1] Zhian He, Eric Lo, “Answering Why-Not Questions on Top-K

Queries”, IEEE, vol.26, no.6, June 2014.

[2] J. Akbarnejad et al., “SQL query recommendations”, PVLDB, vol. 3,

no. 2, pp. 15971600, 2010.

[3] M. Balazinska, N. Khoussainova, Y. C. Kwon, and D. Suciu, “Snip

Suggest: Context-aware auto completion for SQL”, PVLDB, vol. 4,

no. 1, pp. 2233, 2010.
[4] M. Herschel and M. A. Hernndez, “Explaining missing answers to

SPJUA queries", PVLDB, vol. 3, no. 12, pp. 185196, 2010.

[5] Q. T. Tran and C.-Y. Chan, “How to ConQueR why-not questions”,
in Proc. ACM SIG-MOD, New York, NY, USA, 2010, pp. 1526.

[6] M. L. Yiu and N. Mamoulis, “Efficent processing of top-k

dominating queries on multi-dimensional data”, in Proc. VLDB,
Vienna, Austria, 2007, pp. 541552.

